

ISSN 2348 - 8034 Impact Factor- 5.070

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES A SURVEY ON CLUSTER ANALYSIS

Mohammed Fasi Ahmed Parvez^{*1} & G. Pradeepini²

^{*1}Research Scholar- KL University ²Professor- KL University

ABSTRACT

Clustering has become an increasingly popular method of multivariate analysis over the past two decades, and with it has come a vast amount of published material. Since there is no journal devoted exclusively to cluster analysis as a general topic and since it has been used in many fields of study, the novice user is faced with the daunting prospect of searching through a multitude of journals for appropriate references. In order to organize this diverse and voluminous material the following points will be considered: the terminology associated with cluster analysis; the journals containing the most significant papers; the broad nature of the published papers.

Finally, a few thoughts on the state of the literature of cluster analysis are given.

I. INTRODUCTION

Cluster analysis is unsupervised learning method that constitutes a corner stone of an intelligent data analysis process. It is useful for the exploration of inter-relationships among a collection of patterns, by organizing into homogeneous clusters. It is called as unsupervised learning because no a priori labeling of some patterns is available to use in categorizing others and inferring the cluster structure of the whole data. Intra-connectivity is a measure of the density. A high intra-connectivity means a good clustering arrangement because the instances grouped within the same cluster are highly dependent on each other. an Inter-connectivity is a measure of the connectivity between distinct clusters. A low degree of interconnectivity is advantageous because it indicates that individual clusters are largely independent of each other. Every instance in the data set can be represented using the same set of attributes. The attributes are categorical. To stimulate a hypothesis from a given data set, a learning system requires to make assumptions about the hypothesis to be learned. These assumptions are called as biases. Since every learning algorithm uses some biases, it reacts well in some domains where its biases are appropriate while it performs poorly in other domains. The problem with clustering methods is that the interpretation of the clusters may be difficult. The algorithms will always assign the data to clusters even if there were no clusters in the data. Cluster analysis is a difficult problem because many factors

- 1. Effective similarity measures,
- 2. Criterion functions,
- 3. Algorithms are come into play in devising a well tuned clustering technique for a given clustering problems.

Moreover, it is well known that no clustering method can adequately handle all sorts of cluster structures i.e shape, size and density. Sometimes the quality of the clusters that are found can be improved by preprocessing the given data. It is not uncommon to try to find noisy values and eliminate them by a preprocessing step. A common technique is to use post processing steps to try to fix up the clusters that have been found.

II. TERMINOLOGY

Terminology differs from one field to another. In biology, a significant field of study for the use of cluster analysis, the term **'numerical taxonomy'** is frequently used as a substitute for cluster analysis. In pattern recognition the terms are generally **'clustering'** or 'classification', but in cybernetics the term 'unsupervised learning' is often found.

ISSN 2348 - 8034 Impact Factor- 5.070

Geographers use the term 'regionalization' and anthropologists sometimes use cluster analysis to solve a problem they call 'sedation'. Other terms which are frequently used in most fields are 'classification', 'grouping' and 'clumping', 'typology' and 'Q-analysis'.

Further differences in terminology occur throughout the formulation of problems and the description of algorithms, not so much as a result of the use of different words but usually as a result of the use of one word to mean different things. For example, classification is used by some authors to describe techniques for assigning individuals to groups having *a priori* labels and by others to describe the allocation of individuals to initially undefined groups. Fortunately, most authors seem to be acutely aware of this problem and state explicitly their intended meaning of such terms.

sno	Title of the paper	Name of the journal	abstract	conclusion
1	A Survey of Clustering Techniques for Big Data Analysis	IEEE-2014	In this paper discussion of some of the current big data mining clustering techniques was done. Comprehensive analysis of these techniques is carried out and appropriate clustering algorithm is provided	In this paper, there are various clustering Techniques which are currently used for analyzing big data. All these recent techniques are compared on the basis of execution time and cluster quality and their merits and demerits are provided.
2	Classification and Analysis of Clustering Algorithms for Large Datasets	IEEE-2015	This paper gives an overview of available algorithms that can be used for clustering in large datasets. The comparative analysis of available clustering algorithms is provided in this paper. This paper also includes the future directions for researchers in	This paper presents the basic classification of clustering algorithms. The comparison of k- means, single linkage, average linkage, complete linkage, BIRCH, DBSCAN and CLIQUE is given in this paper on the basis of some basic parameters. The available datasets that researchers can utilize to carry out the research

23

Table 1. Journals containing significant publications on cluster analysis

ISSN 2348 - 8034 Impact Factor- 5.070

DUI- 10.5201	/zenodo.1262313			Impact	Factor- 5.070
			the	in data r	nining and
			large database	clusterir	ng domain are
			clustering domain.		this paper
3	Data Clustering	IEEE-2015	This paper is	After cc	mparing the
	Approaches Survey		intended		based on all the
	and Analysis		to examine and		nentioned, here
			evaluate various	are som	· · · · · ·
			data clustering		ions which are
			algorithms. The two	observe	
			major categories of	1.	
			clustering	1.	performance is
			approaches are		inversely
					•
			partition and		proportional to
			hierarchical		the number of
			clustering. The		clusters
			algorithms which	2	considered.
			are dealt here are:k-	2.	The
			means clustering		performance of
			algorithm,		k-means and
			hierarchical		EM is better
			clustering		than
			algorithm, density		Hierarchical and
			based clustering		SOM algorithm.
			algorithm, self-	3.	SOM shows the
			organizing map		highest accuracy
			algorithm, and		in clustering the
			expectation		random data.
			maximization	4.	Hierarchical and
			clustering		SOM algorithms
			algorithm. All the		have better
			mentioned		quality than the
			algorithms are		other two
			explained and		algorithms.
			analyzed based on	5.	All the
			the factors like the		algorithms have
			size of the dataset,		ambiguity in
			type of the data set,		some noisy data
			number of clusters		when clustered.
			created, quality,	6.	When using
			accuracy and		large dataset,
			performance. This		Quality of k-
			paper also provides		means and EM
			the information		becomes better
			about the tools		and when using
			which are used to		small dataset,
			implement the		SOM and
			clustering		hierarchical
			approaches. The		shows better
			purpose of		results
			discussing the	7.	Hierarchical and
			various	/.	
			software/tools is to		SOM gives
			sonware/tools is to		better results

DOI- 10.5281/z	enodo.1262313			Impact Factor- 5.070
			make the beginners and new researchers to understand the working, which will help them to come up with new product and approaches for the improvement.	when random dataset is used. 8. K-means and EM algorithms are less resistant to noise. 9. All the algorithms give almost the same results when implemented in different software
4	An Analysis on Clustering Algorithms in Data Mining	IJCSMC-2014 Vol. 3, Issue. 1, January	This paper provides a broad survey of the most basic techniques and identifies .This paper also deals with the issues of clustering algorithm such as time complexity and accuracy to provide the better results based on various environments. The results are discussed on huge datasets	Given a data set, the ideal scenario would be to have a given set of criteria choose a proper clustering algorithm to apply. Choosing a clustering algorithm, however, can be a difficult task. Even finding just the most relevant approaches for a given data set is hard. Most of the algorithms generally assume some implicit structure in the data set. This paper provides a broad survey of the most basic techniques.
5	A Survey on Clustering Techniques for Big Data Mining	Indian Journal of Science and Technology(IJST) VOL-9 <i>January 2016</i>	This paper focuses on a keen study of different clustering algorithms highlighting the characteristics of big data. Brief overview of various clustering algorithms which are grouped under partitioning, hierarchical, density, grid based and model based are discussed.	This paper analyzed different clustering algorithms required for processing Big Data. The study revealed that to identify the outliers in large data sets, the algorithms that should be used are BIRCH, CLIQUE, and ORCLUS. To perform clustering, various algorithms can be used but to get appropriate results the present study suggests that – by using CURE and ROCK algorithms on categorical data, arbitrary shaped clusters will be

ISSN 2348 - 8034

	enodo.1262313			Impact Factor- 5.070
6	A clustering approach using a	Turkish Journal of Electrical	In this paper, a combination	created. By using COBWEB and CLASSIT algorithms on numerical data with model based, non-convex shape clusters can be formed. For spatial data STING, OPTIGRID, PROCLUS and ORCLUS algorithms when applied yield arbitrary shaped clusters. In this study, a clustering method has been
	approach using a combination of gravitational search algorithm and k-harmonic means and its application in text document clustering	Electrical Engineering & Computer Sciences Accepted/Published Online: 17.04.2016	method of GSA and K-harmonic means, called GSA-KHM, has been proposed, in which the dependency on the initialization has been improved. The proposed GSA- KHM method has been applied to data clustering. As a special application, it has also been used on the text document clustering application. The simulation results show that the proposed method works better than the GSA-KM and other comparative methods in both data clustering and text document clustering applications.	presented by combination of the GSA and KHM. The proposed method has better clustering results than GSA-KM. In addition, unlike GSA-KM, this method is not dependent on the initial centers. This method was applied to five well-known UCI datasets and four textual datasets. The simulation results of both cases show better performance of the proposed GSA-KHM in comparison with GSA- KM
7	Comparative Study of Clustering Data Mining: Techniques and Research Challenges	IJLTEMAS Volume III, Issue IX, September 2014	In this paper covers the various clustering techniques. A tabular comparison of work done by various authors is presented. This paper reviews five types of clustering	Clustering is concern to cluster or categories the "similar" or "dissimilar" dataset into different groups. This paper focuses on the existing literature in the field of data mining clustering. From the analysis it was found that there is no

[Mohammed, 5(6): June 2018]

	6): June 2018]			155N 2348 - 8034
DOI- 10.5281/z	enodo.1262313			Impact Factor- 5.070
			data mining techniques- Partitioning Clustering, Hierarchical Clustering, Grid based clustering, Model based clustering, and Density based alustaring	single technique is applicable/dependable in all domains. But still from analysis, we have conclude that K-means method perform better than other method in many domain.
8	A Survey of Data Mining Clustering Algorithms	International Journal of Computer Applications Volume 128 – No.1, October 2015	clustering This paper aims to provide a brief overview and comparison of different clustering algorithms and methods. The different partitioning methods studied here are k-means and k-medoids. The different hierarchical techniques studied here are BIRCH and CHAMELEON. The different grid-based techniques which are described are DBSCAN and DENCLUE. Lastly, the different techniques which are used in grid- based technique, like STING and CLIQUE are described	This paper aims to provide an overview of the algorithms used in different clustering techniques along with their respective advantages and disadvantages. The different clustering methods that have been studied are partitioning clustering, hierarchical clustering, density based clustering, density based clustering and grid based clustering. Under partitioning method, a brief description of k-means and k-medoids algorithms have been studied. In hierarchical clustering, the BIRCH and CHAMELEON algorithms have been described. The DBSCAN and DENCLUE algorithms under the density based methods have been studied. Finally, under grid-based clustering method the STING and CLIQUE algorithms have been described
9	Study on Various Clustering Techniques	IJCSIT- Vol. 6 (3) 2015	The main aim of this review paper is to provide a comprehensive review of different clustering techniques in data	Clustering is that technique of data mining which is used to extract the useful information from raw data

ISSN 2348 - 8034 Impact Factor- 5.070

DUI- 10.5281/Z	enodo.1262313			Impact Factor- 5.070
			mining. Clustering is the subject of active research in many fields such as statistics, pattern recognition and machine learning. Cluster Analysis is an excellent data mining tool for a large and multivariate database.	
10	Customer Segmentation Using Clustering and Data Mining Techniques	International Journal of Computer Theory and Engineering, Vol. 5,No.6, December 2013	This research paper is a comprehensive report of k-means clustering technique and SPSS Tool to develop a real time and online system for a particular super market to predict sales in various annual seasonal cycles. The model developed was an intelligent tool which received inputs directly from sales data records and automatically updated segmentation statistics at the end of day's business. The model was successfully implemented and tested over a period of three months. A total of n= 2138, customer, were tested for observations which were then divided into k= 4 similar groups. The classification was based on nearest mean. An	In summary, the cluster analysis of the chosen sample of respondents explained a lot about the possible segments which existed in the target customer population. Once the number of clusters was identified, a k-means clustering algorithm, which is a non-hierarchical method, was used. For computing k-means clustering, the initial cluster centers were chosen and then final stable cluster centers were computed by continuing number of iterations until means had stopped further changing with next iterations. This convergent condition was also achieved by setting a threshold value for change in the mean. The final cluster centers contained the mean values for each variable in each cluster. Also, this was interpreted in multi- dimensional projections related to market forecasting and planning. To check the stability of the clusters, the sample

ISSN 2348 - 8034 ct Factor- 5 070

[Monumineu, 5]	6): June 2018]			155N 2348 - 8034
DOI- 10.5281/z	enodo.1262313			Impact Factor- 5.070
			ANOVA analysis was also carried out to test the stability of the clusters. The actual day to day sales statistics were compared with predicted statistics by the model. Results were quite encouraging and had shown high accuracy.	data was first split into two parts and was checked that whether similar stable and distinct clusters emerged from both the sub-samples. These analyses at the end provided further illustrations of using cluster method for market segmentation for forecasting.
11	A Survey on Different Clustering Algorithms in Data Mining Technique	International Journal of Modern Engineering Research Vol.3, Issue.1, Jan-Feb. 2013	Clustering is a kind of unsupervised data mining technique. It describes the general working behavior, the methodologies followed by these approaches and the parameters which affect the performance of these algorithms. In classifying web pages, the similarity between web pages is a very important feature. The main objective of this paper is to gather more core concepts and techniques in the large subset of cluster analysis	The cluster analysis examines unlabeled data, by either constructing a hierarchical structure, or forming a set of groups, according to a pre specified number. In this paper, an attempt has been made to give the basic concept of clustering, by first providing the definition of different clustering algorithms and some related terms
12	A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis	IEEE TRANSACTIONS ON EMERGING TOPICS IN OMPUTING June 2014	one of the major issues in using clustering algorithms for big data that causes confusion amongst practitioners is the lack of consensus in the definition of their properties as well as a lack of	This survey provided a comprehensive study of the clustering algorithms proposed in the literature In general, the empirical study allows us to draw the following conclusions for big data: •No clustering algorithm performs well for all the evaluation criteria, and

ISSN 2348 - 8034 Impact Factor- 5.070

DOI- 10.3201/2	enodo.1262313			Impact Factor- 5.070
			formal categorization. With the intention of alleviating these problems, this paper introduces concepts and algorithms related to clustering, a concise survey of existing (clustering) algorithms as well as providing a comparison, both from a theoretical and an empirical perspective. From a theoretical perspective, we developed a categorizing framework based on the main properties pointed out in previous studies. Empirically, we conducted extensive experiments where we compared the most representative algorithm from each of the categories using a large number of real (big) data sets. The effectiveness of the	future work should be dedicated to accordingly address the drawbacks of each clustering algorithm for handling big data. •EM and FCM clustering algorithms show excellent performance with respect to the quality of the clustering outputs, except for high- dimensional data. However, these algorithms suffer from high computational time requirements. Hence, a possible solution is to rely on programming language and advances hardware technology which may allow such algorithms suffer from stability problem. To mitigate such an issue, ensemble clustering should be considered. •DENCLUE, OptiGrid and BIRCH are suitable clustering algorithms for dealing with large datasets, especially DENCLUE and OptiGrid, which can also
			conducted extensive experiments where we compared the most representative algorithm from each of the categories using a large number of real (big) data sets. The	mitigate such an issue, ensemble clustering should be considered. •DENCLUE, OptiGrid and BIRCH are suitable clustering algorithms for dealing with large datasets, especially DENCLUE and
13	Comparative Studies of Various Clustering Techniques and Its Characteristics	Int. J. Advanced Networking and Applications Volume: 5 Issue:6- 2014	Discovering knowledge from the mass database is the main objective of the Data Mining. Clustering is the key technique in	Discovering knowledge from the mass database is the main objective of the Data Mining. Clustering is the key technique in data mining. A cluster is made up of a number

[Monammea, 50				155N 2348 - 8034
DOI- 10.5281/z	enodo.1262313			Impact Factor- 5.070
			data mining. A	of similar objects
			cluster is made up	grouped
			of a number of	together. This paper
			similar objects	gives the review of four
			grouped together.	important techniques
			The clustering is an	namely Partitional
			-	Clustering, Hierarchical
			unsupervised	
			learning. There are	Clustering, Density
			many methods to	Based Clustering and
			form clusters. The	Grid Based Clustering.
			four important	The different algorithms
			methods of	of these techniques are
			clustering are	discussed. So this paper
			Partitional	provides a quick review
			Clustering,	of these four clustering
			Hierarchical	techniques.
			Clustering, Density-	-
			Based Clustering	
			and Grid-Based	
			Clustering. In this	
			paper, these four	
			methods are	
			discussed in detail	
			uiscusseu ill uetall	
14	Analysis and	International Journal	The research about	The overall goal of the
17	Application of	of Computing	clustering makes a	data mining process is
	Clustering	Algorithm	spurt development	to extract information
	Techniques in Data	Volume: 03, May		from a large data set and
		•	in recent years, and then	transform it into an
	Mining	2014		
			produced a variety	understandable form for
			of clustering	further use. Clustering is
			algorithm. WEKA	important in data analysis
			is a data mining	and data mining
			tool, it provides the	applications. It is the
			facility to	task of grouping a set of
			classify and cluster	objects so that objects
			the data through	in the same group are
			machine learning	more similar to each
			algorithm. This	other than to those in
			paper analyses	other groups
			some typical	(clusters).Clustering can
			methods of cluster	be done by the different
			analysis and	no. of algorithms such as
			represent the	hierarchical, partitioning
			application of the	and grid algorithms.
				and grid argoriums.
			cluster analysis in	
		1	data mining	
15			T1	T
15	Comparative Study		This paper analysis	The most efficient five
15	of Clustering		the four different	types of data clustering
15	of Clustering Techniques in Iris		the four different data types	types of data clustering techniques have been
15	of Clustering		the four different	types of data clustering

Means, Fuzzy c mean, Mountain clustering and Subtractive clustering in Iris flower data set. The accuracy, run time, time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result shows that
clustering and Subtractiveeach algorithm and also the time complexity function are evaluated for performance measures.flower data set. The accuracy, run time, time complexity are tomplexity are the improved Y-means them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resulteach algorithm and also the time complexity
Subtractive clustering in Iris flower data set. The accuracy, run time, time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resultthe time complexity function are evaluated for performance measures. The improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resultthe time complexity function are evaluated for performance measures. The improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
clustering in Iris flower data set. The accuracy, run time, time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resultfunction are evaluated for performance measures. The improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
flower data set. The accuracy, run time, time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resultperformance measures. The improved Y-means has overcome the drawbacks of K-mean and other techniques
accuracy, run time, time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The resultThe improved Y-means has overcome the drawbacks of K-mean and other techniques
time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
time complexity are compared among them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
them and then newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
newly improved Y- means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
means algorithm are proposed in order to improve the obtained clustering result using Matlab tool. The result
proposed in order to improve the obtained clustering result using Matlab tool. The result
improve the obtained clustering result using Matlab tool. The result
obtained clustering result using Matlab tool. The result
result using Matlab tool. The result
tool. The result
shows that
snows that
improved Y-means
algorithm yields
better result when
compared to other
clustering
techniques with less
computation time.

III. CONCLUSIONS

The literature of cluster analysis is scattered throughout many journals in many fields of study. The aim here was not to produce a comprehensive list of references, but to offer a guide to further reading in the subject and a selection of papers covering as many areas as possible. Numerous other references may be found in the papers cited at the end.

At present there is no journal devoted exclusively to the subject of cluster analysis. It is debatable whether or not there is a real need for one. Much can be learned by studying the articles published in the field of cluster analysis. The papers concerning the application of the techniques in particular, should give anyone contemplating using cluster analysis a good idea as to whether or not it will be a suitable and useful method of data analysis; and should help the theorists understand the practical problems involved in using these techniques.

REFERENCES

- 1. MR. Anderberg, Cluster Analysis for Applications, Academic Press, London (1973).
- 2. T. W. Anderson, S. Das Gupta and G. P. H. Styan,» Bibliography of Multivariate Statistical Analysis, Oliver and Boyd, Edinburgh(1972).
- 3. H. T. Clifford and W. Stephenson, An Introduction to Numerical Classification, Academic Press, London (1975).
- 4. A. J. Cole, Numerical Taxonomy, Academic Press, London(1969).
- 5. B. S. Duran and P. L. Odell, Cluster Analysis. A Survey, Springer-Verlag, Berlin (1974).
- 6. B. Everitt, Cluster Analysis, Heinemann Education Books, London (1974).
- 7. W. D. Fisher, Clustering and Aggregation in Economics, JohnHopkins, Baltimore (1968).
- 8. J. A. Hartigan, Clustering Algorithms, John Wiley & Sons, New York (1975).
- 9. N. Jardine and R. Sibson, Mathematical Taxonomy, John Wiley & Sons, London (1971).
- 10. R. R. Sokal and P. H. A. SneatVi, Numerical Taxonomy, Freeman, San Francisco (1973).

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 5.070

- 11. R. C. Tryon and D. E. Bailey, Cluster Analysis, McGraw-Hill, New York (1970). (This book is now out of print.)
- 12. J. Van Ryzin, Classification and Clustering, Academic Press, New York (1977

